Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Urolithiasis ; 52(1): 74, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727838

ABSTRACT

Primary hyperoxaluria type 2 (PH2) is a rare hereditary disease that causes nephrolithiasis, nephrocalcinosis and kidney failure. This study aimed to investigate the clinical features and mutational spectrum of Chinese patients with PH2. A retrospective cohort study was performed on PH2 patients admitted to our center over seven years. We also systematically reviewed all the articles on Chinese PH2 patients published from January 2000 to May 2023 and conducted a meta-analysis. A total of 25 PH2 patients (10 from our center and 15 from published studies) were included in this study. The median age of onset in patients from our center was 8.50 (1.00, 24.00) years, and 50% were male. Among the full cohort of 25 Chinese patients, the median age of onset was 8.00 (0.40, 26.00) years, and 64% of them were male. Seven patients progressed to end-stage kidney disease, with a median age of 27.50 (12, 31) years. The cumulative renal survival rates were 100%, 91.67%, 45.83% and 30.56% at 10, 20, 30 and 40 years of age, respectively. A total of 18 different variants were identified, and c.864_865del was the dominant variant, accounting for 57.69% of the total alleles. Patients who were heterozygous for c.864_865del were more susceptible to nephrocalcinosis than those who were homozygous for c.864_865del and those harboring other mutations (83.33% versus 33.3% and 0%, respectively) (p = 0.025). The clinical features and mutational spectrum of Chinese PH2 patients were described. This study helps to expand awareness of the phenotypes and genotypes of Chinese PH2 patients and contributes to the improvement of diagnostic and treatment strategies for PH2 patients.


Subject(s)
Hyperoxaluria, Primary , Mutation , Humans , Hyperoxaluria, Primary/genetics , Male , Female , Retrospective Studies , Child , Adult , Adolescent , Young Adult , China/epidemiology , Child, Preschool , Asian People/genetics , Infant , Nephrocalcinosis/genetics , Nephrocalcinosis/epidemiology , Age of Onset , Kidney Failure, Chronic/genetics , East Asian People , Transaminases
2.
BMC Genomics ; 25(1): 238, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438984

ABSTRACT

BACKGROUND: The caffeoyl-CoA-O methyltransferase (CCoAOMT) family plays a crucial role in the oxidative methylation of phenolic substances and is involved in various plant processes, including growth, development, and stress response. However, there is a limited understanding of the interactions among CCoAOMT protein members in tea plants. RESULTS: In this study, we identified 10 members of the CsCCoAOMT family in the genome of Camellia sinensis (cultivar 'HuangDan'), characterized by conserved gene structures and motifs. These CsCCoAOMT members were located on six different chromosomes (1, 2, 3, 4, 6, and 14). Based on phylogenetic analysis, CsCCoAOMT can be divided into two groups: I and II. Notably, the CsCCoAOMT members of group Ia are likely to be candidate genes involved in lignin biosynthesis. Moreover, through the yeast two-hybrid (Y2H) assay, we established protein interaction networks for the CsCCoAOMT family, revealing 9 pairs of members with interaction relationships. CONCLUSIONS: We identified the CCoAOMT gene family in Camellia sinensis and conducted a comprehensive analysis of their classifications, phylogenetic and synteny relationships, gene structures, protein interactions, tissue-specific expression patterns, and responses to various stresses. Our findings shed light on the evolution and composition of CsCCoAOMT. Notably, the observed interaction among CCoAOMT proteins suggests the potential formation of the O-methyltransferase (OMT) complex during the methylation modification process, expanding our understanding of the functional roles of this gene family in diverse biological processes.


Subject(s)
Camellia sinensis , Camellia sinensis/genetics , Phylogeny , Methyltransferases/genetics , Tea
3.
Food Chem X ; 21: 101102, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38268839

ABSTRACT

In this study, the mechanism of aged oolong tea (AOT) to alleviate colitis was investigated in terms of microbiome, metabolome, and fecal microbiota transplantation (FMT). AOT storage period could alleviate colitis in mice and there were some differences in AOT between storage periods, especially AOT-10. AOT improves UC by modulating oxidative stress and inflammatory factors and upregulating intestinal tight junction protein expression (Occludin, Claudin-1, ZO-1 and MUC2), which is associated with the recovery of gut microbiota. FMT and targeted metabolomics further demonstrate that the anti-inflammatory effects of AOT can reshape the gut microbiota through faecal bacterial transfer. Anti-inflammatory effects are exerted through the stimulation of metabolic pathways associated with amino acid, fatty acid and bile acid metabolites. Importantly, the study identified key bacteria (e.g., Sutterella, Clostridiaceae_Clostridium, Mucispirillum, Oscillospira and Ruminococcus) for the development and remission of inflammation. Conclusively, AOT may have great potential in the future adjuvant treatment of colitis.

4.
Chemistry ; 30(10): e202302959, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38012090

ABSTRACT

A two-enzyme cascade system containing ω-transaminase (ω-TA) and L-threonine aldolase (L-ThA) was reported for the synthesis of 3-Phenylserine starting from benzylamine, and PLP was utilized as the only cofactor in these both two enzymes reaction system. Based on the transamination results, benzylamine was optimized as an advantageous amino donor as confirmed by MD simulation results. This cascade reaction system could not only facilitate the in situ removal of the co-product benzaldehyde, enhancing the economic viability of the reaction, but also establish a novel pathway for synthesizing high-value phenyl-serine derivatives. In our study, nearly 95 % of benzylamine was converted, yielding over 54 % of 3-Phenylserine under the optimized conditions cascade reaction.


Subject(s)
Glycine Hydroxymethyltransferase , Serine , Serine/analogs & derivatives , Serine/metabolism , Glycine Hydroxymethyltransferase/metabolism , Benzylamines , Pyridoxal Phosphate
5.
Dalton Trans ; 52(25): 8704-8715, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37309863

ABSTRACT

Ternary transition metal oxides (TMOs) are deemed as promising anode materials of Li-ion batteries (LIBs) owing to their large theoretical capacity and rich redox reaction. Nevertheless, the inherent semiconductor characteristic and enormous volume variation of TMOs during cycling bring about sluggish reaction kinetics, fast capacity fading, and poor rate capability. In this study, three-dimensional (3D) porous CoNiO2@CTP architectures, i.e., CoNiO2 microspheres combined with coal tar pitch-derived porous carbon, were designed and synthesized through a one-step hydrothermal method followed by a heat treatment process for the first time. The microsphere morphology increases the contact area between the anode and electrolyte, shortens the transport distance of Li+ ions, and reduces the agglomeration. The existence of the CTP layer provides rich charge transmission paths, improves the electronic conductivity of CoNiO2 and provides abundant active sites for Li+ storage. Owing to the synergistic effect of porous carbon and microsphere morphology of CoNiO2, the CoNiO2@CTP (10.0 wt%) anode shows remarkable electrochemical performance with a high charge capacity (1437.5 mA h g-1 at 500 mA g-1), good rate performance (839.76 mA h g-1 even at 1 A g-1), and remarkable cycle durability (741.4 mA h g-1 after 1000 cycles at 1 A g-1), which is significantly better than pristine CoNiO2. This study not only provides a simple strategy for high-value utilization of CTP but also offers cost-effective CoNiO2@CTP architectures for high-performance LIBs.

6.
Comput Biol Med ; 158: 106892, 2023 05.
Article in English | MEDLINE | ID: mdl-37028143

ABSTRACT

Vessel segmentation is significant for characterizing vascular diseases, receiving wide attention of researchers. The common vessel segmentation methods are mainly based on convolutional neural networks (CNNs), which have excellent feature learning capabilities. Owing to inability to predict learning direction, CNNs generate large channels or sufficient depth to obtain sufficient features. It may engender redundant parameters. Drawing on performance ability of Gabor filters in vessel enhancement, we built Gabor convolution kernel and designed its optimization. Unlike traditional filter using and common modulation, its parameters are automatically updated using gradients in the back propagation. Since the structural shape of Gabor convolution kernels is the same as that of regular convolution kernels, it can be integrated into any CNNs architecture. We built Gabor ConvNet using Gabor convolution kernels and tested it using three vessel datasets. It scored 85.06%, 70.52% and 67.11%, respectively, ranking first on three datasets. Results shows that our method outperforms advanced models in vessel segmentation. Ablations also proved that Gabor kernel has better vessel extraction ability than the regular convolution kernel.


Subject(s)
Algorithms , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
7.
Comput Biol Med ; 153: 106514, 2023 02.
Article in English | MEDLINE | ID: mdl-36628913

ABSTRACT

Thyroid nodules, a common disease of endocrine system, have a probability of nearly 10% to turn into malignant nodules and thus pose a serious threat to health. Automatic segmentation of thyroid nodules is of great importance for clinicopathological diagnosis. This work proposes FDE-Net, a combined segmental frequency domain enhancement and dynamic scale cavity convolutional network for thyroid nodule segmentation. In FDE-Net, traditional image omics method is introduced to enhance the feature image in the segmented frequency domain. Such an approach reduces the influence of noise and strengthens the detail and contour information of the image. The proposed method introduces a cascade cross-scale attention module, which addresses the insensitivity of the network to the change in target scale by fusing the features of different receptive fields and improves the ability of the network to identify multiscale target regions. It repeatedly uses the high-dimensional feature image to improve segmentation accuracy in accordance with the simple structure of thyroid nodules. In this study, 1355 ultrasound images are used for training and testing. Quantitative evaluation results showed that the Dice coefficient of FDE-Net in thyroid nodule segmentation was 83.54%, which is better than other methods. Therefore, FDE-Net can enable the accurate and rapid segmentation of thyroid nodules.


Subject(s)
Neural Networks, Computer , Thyroid Nodule , Humans , Thyroid Nodule/diagnostic imaging , Ultrasonography/methods , Tomography, X-Ray Computed/methods , Probability , Image Processing, Computer-Assisted/methods
8.
Phys Med Biol ; 68(3)2023 01 31.
Article in English | MEDLINE | ID: mdl-36634367

ABSTRACT

Objective. Bone segmentation is a critical step in screw placement navigation. Although the deep learning methods have promoted the rapid development for bone segmentation, the local bone separation is still challenging due to irregular shapes and similar representational features.Approach. In this paper, we proposed the pairwise attention-enhanced adversarial model (Pair-SegAM) for automatic bone segmentation in computed tomography images, which includes the two parts of the segmentation model and discriminator. Considering that the distributions of the predictions from the segmentation model contains complicated semantics, we improve the discriminator to strengthen the awareness ability of the target region, improving the parsing of semantic information features. The Pair-SegAM has a pairwise structure, which uses two calculation mechanics to set up pairwise attention maps, then we utilize the semantic fusion to filter unstable regions. Therefore, the improved discriminator provides more refinement information to capture the bone outline, thus effectively enhancing the segmentation models for bone segmentation.Main results. To test the Pair-SegAM, we selected the two bone datasets for assessment. We evaluated our method against several bone segmentation models and latest adversarial models on the both datasets. The experimental results prove that our method not only exhibits superior bone segmentation performance, but also states effective generalization.Significance. Our method provides a more efficient segmentation of specific bones and has the potential to be extended to other semantic segmentation domains.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Bone and Bones/diagnostic imaging , Semantics
9.
Chem Commun (Camb) ; 58(40): 6016-6019, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35502651

ABSTRACT

Inspired by biocatalytic retrosynthesis, a multienzyme cascade system containing alcohol dehydrogenase, flavin-dependent halogenase and flavin reductase was developed for the synthesis of several halogenated indoles starting from amino alcohol. This redox-neutral system not only omitted co-substrate for nicotinamide cofactor (NADH) regeneration but also showed relatively higher conversion and chemoselectivity compared with individual biotransformation. Artificial nicotinamide cofactor (BNAH) was employed to replace NADH and flavin reductase for simplifying this system, providing a more convenient strategy for halogenated indoles.


Subject(s)
Indoles , NAD , Alcohol Dehydrogenase/metabolism , Flavins , NAD/metabolism , Niacinamide , Oxidation-Reduction
10.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613645

ABSTRACT

Raffinose synthetase (RS) is a key enzyme in the process of raffinose (Raf) synthesis and is involved in plant development and stress responses through regulating Raf content. As a sweetener, Raf makes an important contribution to the sweet taste of white tea. However, studies on the identification, analysis and transcriptional regulation of CsRSs (Camellia sinensis RS genes) are still lacking. In this study, nine CsRSs were identified from the tea plant (Camellia sinensis) genome database. The CsRSs were classified into five groups in the phylogenetic tree. Expression level analysis showed that the CsRSs varied in different parts of the tea plant. Transcriptome data showed that CsRSs could respond to persistent drought and cold acclimation. Except for CsRS5 and CsRS9, the expression pattern of all CsRSs increased at 12 h and decreased at 30 h during the withering process of white tea, consistent with the change trend of the Raf content. Furthermore, combining yeast one-hybrid assays with expression analysis, we found that CsDBB could potentially regulate the expression of CsRS8. Our results provide a new perspective for further research into the characterization of CsRS genes and the formation of the white tea flavour.


Subject(s)
Camellia sinensis , Camellia sinensis/metabolism , Raffinose/metabolism , Gene Expression Profiling/methods , Ligases/metabolism , Phylogeny , Gene Expression Regulation, Plant , Tea/genetics , Tea/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Bioresour Bioprocess ; 8(1): 94, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-38650200

ABSTRACT

BACKGROUND: Lactones are important compounds in the field of medicine, material and chemical industry. One of the promising accesses to these flexible scaffolds is NAD(P)+-dependent alcohol dehydrogenases-catalyzed oxidative lactonization of diols, which relies on the construction of an efficient NAD(P)+ regeneration system. RESULTS: In this study, a novel system combining horse liver alcohol dehydrogenase (HLADH) with the synthetic bridged flavin cofactor was established for biosynthesis of lactones. The reaction conditions of this system were optimized and a variety of lactones including chiral lactones were efficiently obtained from various diols. Compared to the previously reported NAD(P)+-regeneration systems, this system showed better regeneration efficiency and product yield. A two-phase system was further applied to solve the problem of product inhibition, and 80% yield was obtained at the condition of 300 mM substrate. CONCLUSIONS: This study provides an efficient method to synthesis of lactones from diols under mild conditions. We believe this system will be a promising alternative to promote the synthesis of other valuable compounds.

12.
Sci Bull (Beijing) ; 65(7): 546-556, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-36659186

ABSTRACT

In this work, a rational design and construction of porous spherical NiO@NiMoO4 wrapped with PPy was reported for the application of high-performance supercapacitor (SC). The results show that the NiMoO4 modification changes the morphology of NiO, and the hollow internal morphology combined with porous outer shell of NiO@NiMoO4 and NiO@NiMoO4@PPy hybrids shows an increased specific surface area (SSA), and then promotes the transfer of ions and electrons. The shell of NiMoO4 and PPy with high electronic conductivity decreases the charge-transfer reaction resistance of NiO, and then improves the electrochemical kinetics of NiO. At 20Ag-1, the initial capacitances of NiO, NiMoO4, NiO@NiMoO4 and NiO@NiMoO4@PPy are 456.0, 803.2, 764.4 and 941.6Fg-1, respectively. After 10,000 cycles, the corresponding capacitances are 346.8, 510.8, 641.2 and 904.8Fg-1, respectively. Especially, the initial capacitance of NiO@NiMoO4@PPy is 850.2Fg-1, and remains 655.2Fg-1 with a high retention of 77.1% at 30Ag-1 even after 30,000 cycles. The calculation result based on density function theory shows that the much stronger Mo-O bonds are crucial for stabilizing the NiO@NiMoO4 composite, resulting in a good cycling stability of these materials.

13.
J Environ Manage ; 215: 248-257, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29573675

ABSTRACT

The stability and resilience of an anaerobic ammonium oxidation (anammox) system under transient nanoscale Zero-Valent Iron (nZVI) (50, 75 and 100 mg L-1), hydraulic shock (2-fold increase in flow rate) and their combination were studied in an up-flow anaerobic sludge blanket reactor. The response to the shock loads can be divided into three phases i.e. shock, inertial and recovery periods. The effects of the shock loads were directly proportional to the shock intensity. The effluent quality was gradually deteriorated after exposure to high nZVI level (100 mg L-1) for 2 h. The higher effluent sensitivity index and response caused by unit intensity of shock was observed under hydraulic and combined shocks. Notably, the specific anammox activity and the content of heme c were considerably reduced during the shock phase and the maximum loss rates were about 30.5% and 24.8%, respectively. Nevertheless, the extracellular polymeric substance amount in the shock phase was enhanced in varying degrees and variation tendency was disparate at all the tested shock loads. These results suggested that robustness of the anammox system was dependent on the magnitude shocks applied and the reactor resistance can be improved by reducing hydraulic retention time with the increase of nZVI concentration under these circumstances.


Subject(s)
Iron/chemistry , Wastewater , Bioreactors , Sewage , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...